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We consider diffusive systems with static disorder, such as Lorentz gases, lattice 
percolation, ants in a labyrinth, termite problems, random resistor networks, 
etc. In the case of diluted randomness  we can apply the methods of kinetic 
theory to obtain systematic expansions of dc and ac transport  properties in 
powers of the impurity concentration c. The method is applied to a hopping 
model on a d-dimensional cubic lattice having two types of bonds with conduc- 
tivity ~ and co = 1, with concentrations c and l-c, respectively. For the square 
lattice we explicitly calculate the diffusion coefficient D(c, a) as a function of c, 
to O(c 2) terms included for different ratios of the bond conductivity a. The 
probability of return at long times is given by Po(t)~ [@rD(c, a) t] ,1,2, which is 
determined by the diffusion coefficient of the disordered system. 

KEY WORDS:  Lorentz gas; random walk on a disordered lattice; ant in a 
labyrinth; termite problem; bond percolation; random resistor network. 

1. I N T R O D U C T I O N  

Kinetic theory methods for obtaining density expansions (1~ of static and 
frequency-dependent transport properties can be applied successfully to lat- 
tice models with quenched disorder, at least for densities not too close to a 
percolation threshold. This is shown by the results for the diffusion coef- 
ficient and the velocity autocorrelation function (VACF) in 2D lattice 
models with site (2"3) or bond/4) disorder. 

Diffusive systems with static disorder, such as Lorentz gases, dynamic 
percolation, ants in a labyrinth, termite problems, random barrier models, 
random resistor networks, or the closely related lattice dynamics problems 
with normal and superelastic springs, etc., have received much recent atten- 
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tion. Such problems can be modeled by random walks on disordered lat- 
tices which are equivalent to lattice dynamics of disordered harmonic 
crystals. 

For  the case of diluted randomness, where only a random fraction c of 
bonds or sites of the host lattice have been replaced by impurities, we 
develop a kinetic theory for diffusion phenomena on random lattices. In 
particular, we study a random walk on a square lattice with two types of 
bonds: impurity bonds with a transition rate ("conductance") a and bonds 
of the host lattices with conductance % = 1. The model describes bond per- 
colation for a = 0 and the termite problem for ~r >> 1. 

Different methods to study these problems have already been dis- 
cussed in Ref. 4. Here we only mention the effective medium 
approximation(S 81 and the single-impurity approximation, f9"~~ which yield 
results identical to those of kinetic theory in linear order in the impurity 
concentration. 

The basic quantity to be studied in this paper is the probability dis- 
tribution P,,(t) for a displacement n in a time t, averaged over the quenched 
disorder, for a hopping model on a cubic lattice with unit lattice distance. 
From this quantity one can obtain the moments of displacement and 
related quantities. The most important one is the mean square dis- 
placement (n  2)( t )  and the related time-dependent diffusion coefficient 

= ~ ~ d~ ~o(~) (1.1) zS(t) 5 (o/~i)<.~.>(1)= Jo 

where /3(oo)= D is the static diffusion and qi(t) is the lattice analog of the 
VACF 

1 
~o(,) = < v , ( 0 )  v , ( , ) >  = ~  (~/~,)'- <,~ .>( , )  (1.2) 

The macroscopic conductivity in these bond models is directly propor- 
tional to the static diffusion coefficient D. 

In this section we first present a detailed description of the model, and 
recall some symmetry properties. We consider a hopping model on a lat- 
tice, where an unbiased random walker (blind ant) makes nearest neighbor 
hops and is hindered by the presence of randomly distributed bond 
impurities (scatterers). The lattice is a d-dimensional simple cubic lattice 
with unit lattice distance, with N =  L d sites and periodic boundary con- 
ditions. A site is labeled by n =  (nx, n,. ..... nj) and its second nearest 
neighbors are labeled by n + p. 

A fraction c of bonds in the host lattice (having "conductivity" % -- 1 ) 
is replaced by impurity bonds with "conductivity" a. The impurity bonds 
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may be nonconducting ( a = 0 ,  "hard scatterers") or have a nonvanishing 
conductivity a which may be larger or smaller than that of the host lattice. 
If a>> 1 we have the case of "superconducting" bonds or the "termite 
problem. ''~l~ When moving on a connected cluster of superconducting 
bonds, the RW makes on the average a jump every 1/a time units (fast 
time scale). However, the RW will leave the superconducting cluster after 
an average number  of a jumps,  and moves onto the connected cluster of 
normal-conducting bonds, where it makes on the average a jump in one 
unit of time (slow time scale). The above arguments apply only to small 
(impurity) clusters of size l = 1, 2 ..... which is the case of interest in a low- 
density theory to O(cS). 

Here we choose the formulation of continuous-time random walks 
(CTRW), where the RW pauses after every hop during a time interval r, 
which is a random variable with an exponential distribution. Such CTRW 
can be described by the master equation with a continuous time, t~2/where 
the transition rate across a bond is proport ional  to its conductivity, which 
has either the value a o = 1 or a -  1 - b .  The probabili ty distribution p,,(t) 
to find the RW on site n at time t is then described by 

P,, = ( 1 / 2 d )  ~ ~b,,.,, + , , (p , ,  + f, - p , , )  ( 1 . 3 )  
O 

Here we have assigned to every bond (n, n + P )  a random variable 

~,,.,,+,,= 1 -bc,,.,,+i, (1.4) 

where b =  1 - a~< 1 and where 

{~ with probabili ty c 

c,,.,, + ~, = with probabili ty 1 - c 
(1.5) 

The solution of the master equation depends on the set of random 
variables {c,,}, and the quantity of physical interest is obtained by averag- 
ing this solution over the probability distribution of {c,,}. The most basic 
quantity is the average probabili ty of displacements P,,(t), whose 
Fourier-Laplace transform is the response function F(q, z). 

These functions obey symmetry relations based on the interchange of 
the two types of conductors. ~13~ We first note that the master equation is 
invariant under the mapping a ~ a ' =  I/a, and c,,.,,+~, --+ ci,.,,+,> = 1 - c,,.,,+,, 
and t ~ t ' -  at. If we map in addition the probability distribution (1.5) as 
c --+ c' = 1 - c, then the average quantities possess the following symmetry: 

P,,(t, c, a ) =  P,,(at, l - c ,  I /a)  (1.6) 
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This implies the following symmetry relations for the diffusion coefficient 
and VACF due to (1.1) and (1.2): 

D(c, a) = aD(1 - c ,  l/a) 
(l,7) 

O(t, c, o) = o2~o(at, 1 - c, l/o) 

Analogous symmetry relations hold for D(t) in (1.1). We note that D(0, a) 
is the diffusion coefficient of the host lattice without impurities. Measured 
in the length and time units used in this paper, D(0, a ) =  1/2d=_ Do. 

The above symmetry relations apply for general dimensionality. In the 
two-dimensional case we have an additional symmetry, since the square 
lattice with a random mixture of two different types of bonds (conductan- 
ces) is self-dual, as shown by Straley] 131 This yields 

D(c, a)D(c, 1/a)= D o (1.8) 

Combination of both symmetries yields 

D(c, a)D(1 - c ,  a ) = a D  2 (1.9) 

From there the exact value for the half-filled lattice follows as 
D( l, a) = a l / 2 D o  . 

The plan of the paper is as follows. In Section 2 we develop a 
resolvent formalism for the master equation p,, = -(Lp), ,  and make a T- 
matrix expansion of the average resolvent ( ( z + L )  -~). In Section 3 the 
response function is evaluated to linear and quadratic order in the impurity 
concentration c. As an application, we obtain the coefficients in the c 
expansion of the diffusion coefficient (Section 4) and of the long-time 
behavior of the return probability (Section 5) and present the numerical 
results for these coefficients obtained by performing 2D lattice sums. In our 
analytic and numerical calculations in the present and in a subsequent 
article we also need short-time expansions of the response function and 
transport quantities derived from it. The coefficients in these expansions 
will be calculated for general impurity concentration and general dimen- 
sionality in Section 6. We further need many properties of the basic 
Green's functions for the square lattice, which can be derived along the 
lines of Ref. 14 and are given in Appendix A. In Appendix B a certain lat- 
tice sum is calculated analytically, whereas Appendix C calculates the ring 
collision integral and the return probability on an impurity-free lattice. 

2. T - M A T R I X  E X P A N S I O N  

In this section the hopping model is cast in the language of kinetic 
theory by developing a T-matrix expansion of the response function. 
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We start with the master equation (1.3), which reads in a notation 
more convenient for our purposes 

= - (1 /2d)  ~ (1 - E~-') @~,(1 - E=) p,, 

= - Z L , , ~ p ~ =  - (Lp) , ,  (2.1) 
m 

where L .... is the coordinate representation of the linear master operator L. 
From now on we label the bond ( n , n + p ~ )  by (n, ~), and the random 
variable (1.6) and (1.7) will be denoted by 

~,~, = 1 - bc, ~, (2.2) 

The vector p~ is a lattice vector in the e direction (c~ = x, y,..., d) and E~ is a 
shift operator, defined as E ~ A ( n ) = A ( n + p ~ ) .  We further note for later 
convenience that the stationary solution of (2.1), properly normalized, 
reads pO = 1/N. 

The average concentration of impurities is 

c= (dN) ' ~ c,] = (c,~) 

Here and in the sequel brackets ~ . . - )  imply an average over the 
probability distribution of the random variables {c,~}. The case b = 1 in 
(2.2) corresponds to nonconducting bonds (percolation problem, "pure 
ant" model); the case b = 0 represents the ordinary RW on a uniform lat- 
tice. The limit b ~ - o r  corresponds to superconducting bonds ("pure ter- 
mite" model). 

The quantity of main interest, which describes all transport properties, 
is the probability distribution ( p ( n t ; m O ) ) = P  . . . .  (t) for a displacement 
n - m  averaged over the random impurities. An equivalent description can 
be given in terms of its moments of displacement: 

<(n~--m.~) l) = ~ (nx- -mj  <p(nt;mO)) 
n,rr!  

(2.3) 

The two-time probability distribution p(nt; toO) can be expressed in terms 
of the conditional probability p(ntjmO) multiplied by the initial dis- 
tribution pm(0), which is always taken to be the stationary solution of 
(2.1), viz. pro(0)= p0 = 1/N. Thus, we write the formal solution of (2.1) as 

p(nt; mO ) = p(nt l mO ) pO = N-~(exp  - tL) .... 
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The generating function for the (Laplace-transformed) moments of dis- 
placement--mostly referred to as response function--is then 

F ( q , z ) = N - l l ~ e i q ( " - m ' l } = ( n [ m ) t  
n , m  

= ( ( z - l - L ) - l ) q q  (2.4) 

The propagator 1)~(n lm)=((z+L)-~)nm is the Laplace transform of 
p(ntlmO), and we have introduced the Fourier representation Mqq, of a 
matrix A.m in coordinate representation as 

Aqq, = N -1 2 ei"qft,m e-~mq' (2.5) 
n,rn 

where q is a reciprocal lattice vector in the first Brillouin zone (1BZ). All 
q sums in this paper extend over 1BZ. For  later reference we quote the 
orthogonality relations: 

N - 1 2 e m ( q - - q ' ) = ( ~ q q , ;  N 1 ~ e iqC . . . . .  ) = 6  ..... (2.6) 
n q ~  I B Z  

The function P,(t)  is the lattice analog of Van Hove's G(r, t) function 
in the theory of liquids; its Fourier Laplace transform F(q, z) is the 
scattering function. In Eq. (2.4) we have cast the response function in a 
form very similar to and very suitable for kinetic theory analysis, (l~ which 
we will develop in the remaining part of this section. 

To proceed, we decompose L in (2.1) according to (2.2) into a part L ~ 
referring to the uniform lattice and a perturbation - 6 L  describing the 
impurities, i.e., L = L ~  6L, with 

(L~ = ( 1/2d) Z ( 1 - E2  ~ )( 1 - E= ) a,, 

(2.7) 
(6La),, = (b/2d) ~ (1 - E~ -1 ) c,~(1 - E=) a,, 

We further define g = (z + L ~  t as the propagator of the uniform lattice. 
In the Fourier representation (2,5) these quantities have the form 

L~ = co(q) 6 qq, (2.8) 

gqq, = g(q) 6qq, = [z + co(q)] I (~qq, 

where 

r ~ e*(q)e~(q)=(1/d) ~ (1-cosq~) (2.9) 
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The asterisk denotes complex conjugation and G ( q ) =  1 - e x p ( - i G ) .  For 
the perturbation we find similarly 

(~Lqq, = (b/2dN) ~, ~ i(q q'), * c~e G(q)  G(q') (2.10) 

where only the impurity bonds contribute to the (n, ~) sum. The formal 
perturbation expansion of F(q, z) follows with the help of 

(z + L ~  6L) 1 

and (2.4) and (2.8) yield 

= g ~ ((~Lg)' 
/ = 0  

F(q, z) = g(q) + g2(q) M(q, z) 

(2.11) 
M(q, z )=  L {(6Lg)'6L)qq 

/ = 0  

Each cSL contains a sum over impurities. The terms in the perturbation 
expansion can be regrouped by adding successive terms referring to the 
same impurity by the so-called T-matrix resummation. To that purpose we 
consider 

[(6Lg) ~ 6L]uq, = ~ c~Luqlgl 6L,l~u2g2""cSL, , ~q,g~3Lq,q. 
q l  " " " q l  

where gi = g(qi) as defined in (2.8) and all q sums run over IBZ. Next we 
insert (2.10), with the result 

[(6Lg)' 6L]qq, 

: N- ' (b /2e)  '+l Z " Z  ~, c~,l"c:',c~, 
t l l ~  1 / l l ~  I I ~ z f l  

x exp(iqn I - iq'm) e*j(q) G~,~2(n ~ - n2) 

x G~2~(n 2 - n3)"" G~/~(n/- m) ez(q') (2.12) 

Here we have introduced the quantity 

f e G(q)g(q ,z )ey(q)  (2.13) G~(n, z )= -iu,, 

with the short-hand notation 

f, �9 " = N - '  ~ ""  ~ (2~) -d ""  d(J)q ' ' '  (2.14) 
N ~ o o  

q ~ I B Z  rc 
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In the thermodynamic limit (N--* oo) the q summation may be replaced by 
an integral over the 1BZ. The quantity G~(n, z) is essentially (apart from 
the goniometric factors Ge~) the probability for a displacement n on a 
uniform lattice. 

Suppose that two successive bond labels (n, ~) and (m,/3) refer to the 
same bond; then cnc m ~ ~ -- (c~) 2 = c,,~ and G~(0, z) is essentially the probability 
of return to the same site or bond on a uniform lattice. If we sum all 
possible returns to the impurity bond (no0, we have the single-impurity T- 
matrix 

T(z) = (b/2d) ~ [bG~(0, z)/2d]'= (b/2d)[1 -bJ(z)] - 1  

/ = 0  

(2.15) 

The T-matrix is a scalar in the present bond model and is independent of 
(c~ = x, y ..... d) because of cubic symmetry, where we have introduced 

J ( z ) =  (1/2d) G~(O, z ) =  (1/d) fqg(q)(1-cos q~) 

= (l /d) ~ co(q)/[z+co(q)] (2.16) 

and we used the cubic symmetry together with (2.13) and (2.9). 
In order to carry out the T-matrix resummation in (2.11), we average 

(2.12) over the probability distribution of the impurities, and obtain with 
the help of (2.15) the final result of this section: 

M(q, z )=N ' ~ (c,~,) T(z) e*(q) G(q) 
n~x 

+N-~ Z Z 2 '  2 '  2 '  (c2:~c:22""c:',c~>e'q'"; m, 
/ ' =  1 ;~zl~r 1 ;120r nlo;I mf l  

x 8*~,(q) T(z) Gala2(nl - -  ha) 

x T(z)G~2~3(n2-n3) T(z)'"G~,fj(nl-m) T(z)e#(q) (2.17) 

The primes on the summation signs indicate that any pair of consecutive 
bond labels is different. 

3. D E N S I T Y  E X P A N S I O N  

The first term in (2.17) involves encounters of the RW with a single 
impurity only. It is therefore linear in the impurity concentration ( c ~ ) =  c 
and simplifies to 2dc T(z) co(q) due to (2.9). All remaining terms in (2.17) 
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involve at least two different impurities, so that < ~ ~ t~ c,c,,.. . ,  c m> is at least 
quadratic in c. Thus, the response function (2.11) to linear order in c is 
given by 

M(q, z) = 2dc T(z) co(q) = cbco(q)/[1 - bJ(z) ] (3.1) 

The term in (2.17) with l =  1 contains an encounter of the RW with 
impurity (n, c0-= 1 and a subsequent one with a different impurity 
(m, fl)-= 2, formally denoted by the collision sequence [12]. The term with 
/ = 2  involves the sequence of encounters [12k], which contains a two- 
impurity contribution [121] and a three-impurity contribution [123]. All 
terms with l~> 2 contain at least two impurity contributions. They are of 
O(c 2) since ~ ~ ~.- < c,,c,, c, �9 > = <C~C~m > = C 2. The two-impurity contributions in 
higher order terms involve the following encounter sequences with 
impurities (1) and (2): [12],  [121], [1212], [12121],..., and contain 
respectively one, two, three, four ..... crossings between the impurity pair 
(12). To evaluate the contributions of such sequences to M(q, z) in (2.17), 
we have to consider separately the terms with an odd number of crossings, 
denoted by M(~ Z), where the RW starts at impurity (1) and ends at 
impurity (2); and M ( . . . .  I(q, z) with an even number of crossings, where the 
RW returns to the first impurity. We begin with the odd number of 
crossings, where starting position n and final position m are different: 

M(~ Z)= (c2/N) ~ ~ e iq( . . . . .  ) 
(ha) ~ (raft) 

x Te*(q) R~ l~(n -m)R/3~(m-n) ' "R~rr  (3.2) 

and we have introduced 

R~/j(n, z) = G~(n, z) T(z) = R / ~ ( - n ,  z) (3.3) 

Since the summand in (3.2) depends only on ( n -  m), we can trivially carry 
out one of the lattice sums. Using the symmetry (3.3), we find for the total 
contribution of two impurities with an odd number of crossings in between 

M(~ ~'eiqn~p(q) e*(q)[1 - - R ~ ( n ) ]  ~ R~(n)  (3.4) 

For the total two-impurity contribution of an even number of crossings 
one finds similarly 

m ( . . . .  ) (q ,  z) = cZT ~ '  le~(q)[ 2 [ 1 - R~(n ) ]  -1 R~/j(n) 
n~zfl 

= 2dTc2co(q) Z '  R~(n) /[1  - R ~ ( n ) ]  (3.5) 
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In the last equality we have used the fact that the coefficient of le~(q)l 2 is a 
lattice sum Z ~  { ' " } ~ ,  independent of e, because of cubic symmetry. 
Next, the c~ sum is performed with the help of (2.9) and yields the factor 
2&o( q ), 

Combination of (3.1), (3.4), and (3.5) yields the total contribution to 
(2.11), exact up to O(c 2) terms included, 

L n// ) 

+ c2T ~ '  e'q"ez(q) e*(q) R~t3(n)/[1 --R~z(n)] (3.6) 
nc~fl 

where the prime on the summation signs indicates the constraint 
(n/~) # (0x) and (n/}) # (0e), respectively. 

The result (3.6) together with F(q, z) = g(q) + g2(q) M(q, z) deter- 
mines the response function exact to O(c 2) and can be used to calculate the 
distribution of displacements Pn(t) or its moments <n!~>, the diffusion coef- 
ficients, the VACF, and related time correlation functions. It is the basic 
result of this paper, and serves as a starting point for deriving explicit 
expressions for the above quantities in terms of lattice sums. Then the lat- 
tice sums have to be evaluated, partly analytically, partly numerivally. In 
the present article this program is carried out for the static diffusion coef- 
ficient in Section 4 and for the long-time behavior of the return 
probabilities in Section 5. 

4. STATIC D IFFUSION COEFFICIENT 

In the previous section we have obtained the response function or 
moment-generating function (2.11), where M(q, z) has been calculated in 
(3.6) to O(c 2) in the concentration of impurities. In this section we concen- 
trate on the mean square displacement <n~), the diffusion coefficient D, 
and the VACF q)(t). Denoting the Laplace transform of the VACF as @(z), 
we have for the static diffusion coefficient D = qS(z = 0). The quantity ~(z) 
can be considered as the frequency-dependent diffusion coefficient, and we 
have, according to (1.1), (1.2), (2.3), and (3.4), 

r  = 1  2 ~z <nx)(z  ) = -�89 z) (4.1) 

where <n!~)(z) represents the Laplace transform of the lth moment of the 
displacement and where we have used the abbreviation 

A"(0, z) = (~?/0q~) 2 A(q, z)lu=0 
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Expressed in M(q, z), this becomes @(z)= (2d) - l - •  -~ w, z), and we 
obtain after some calculation, using Eq. (3.6), 

y / 2  2 r  = (2d) 1 - cT(z) 1 + c Rx~(n, z)/[1 - R.,~(n, z)]  
nfl 

+ c Z R.~(n, z)/[1 2 t - R~x(n, z)] (4.2) 
n r  ) 

This expression represents the Laplace transform of the VACF, exact to 
O(c 2) terms included. The static diffusion coefficient follows by taking the 
limit as z ~ 0. Thus, we have to evaluate the d-dimensional lattice sums in 
(4.2) at z = 0 ,  where the functions R~(n, 0 ) =  T(O) G~(n, 0) decay as 

2 + n 2 + .. ~ A detailed analysis of this O(fnl-d) for [nl >> 1, where In[ 2 =n.~ "n a. 
behavior for the two-dimensional case is given in Appendix A. Therefore 
the lattice s u m S ,  [R~(n, 0)l diverges logarithmically, and one is not 
allowed to interchange the lattice summation with the limit as z ~ 0 .  
However, the slowly convergent terms in (4.2), which originate from a 
single crossing of the RW between two impurities, can be summed 
analytically using the relation Z ,  R.~x(n, z ) =  0. It can be obtained from 
(3.3), (2.13), and (2.6), and the relevant lattice sum becomes 

e ~ ( n ,  z)  Rx.~(n , z) 3 
1 2 - 

n,~O nO-0 

where we have used the relation R~x(0, z ) =  T(z)G~x(O, z) together with 
(2.16). The summand of the d-dimensional lattice sum at z = 0 decreases as 
O(Jnl 3d) and we can calculate the sum by first setting z = O and next per- 
forming the lattice sum. 

The convergence can be improved further by subtracting the double 
crossings of the RW between two impurities and summing them 
analytically. The required lattice sum Y~ 2 R~(n,  z) is calculated in Appen- 
dix B. In the remaining lattice sums the summands are at large Jnl propor- 
tional to R3=4j(n, O) ~ O([n] -3d) and converge very rapidly. We simply quote 
the final expression for the VACF for the d-dimensional cubic lattice, exact 
up to O(c2): 

I _ c T -  c2T t - 2 d T J  + 4 d 2 T 2 [ j  - j2  _}_ zJ ' ]  
r. 

q~(z ) (2d) 

Rxy(n' ") 
+ ~ 1 - - -R~- -~ , z )~ - (d -1 )  ~ 1 2 + O ( c  3) (4.3) 

.~o  ~.~o - R ~ ( n ,  z )J  

where J'(z)= dJ(z)/& and T(z) and R~(n,  z) are respectively defined in 
(2.15), (2.16), and (3.3). The resulting expression for the diffusion coef- 
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ficient in a d-dimensional cubic lattice follows from (4.3) by setting z = 0 ,  
and using the relations T(0)= �89 and J (0 )=  1/d derived from (2.15) 
and (2.16). It has the form of an expansion in powers of the impurity con- 
centration: 

D(c)=Do(1 -}- O~IC-~ ~2C2 q - " ' ' )  (4.4) 

where D O = 1/2d and 

~, = - d b / ( d -  b) 

db I db(1-b) ~ R3x(n,O) 
c~2- d - b  ( d - b )  2 + 1 -~R~(~,  b) n 0 

+ ( d - l )  Z 1 -R~v(n ,O) j  
n~-0 

(4.5) 

The zeroth-order term Do =- 1/2d is the diffusion coefficient of the uniform 
lattice without impurities; the coefficient el of the linear term in c 
represents the contribution from scattering by a single impurity; and the 
coefficient ~2 of the O(c) term describes the contribution from scattering by 
two different impurities. For the 1D case one verifies that Rxx(n, 0) = 0 for 
n C0 and the density expansion (4.5) is in agreement with the exact 
result (4'16) for the 1D random barrier model, where 
Do/D = ( l / i f ) =  I + cb/(1 -b) .  For the explicit evaluation of the O(c 2) 
terms we restrict ourselves to the 2D square lattice. Due to the square sym- 
metry one has the symmetry relation at the site (nx, n~.): 

R.~x(nx, ny; O) = -R~x(ny, nx; O) (4.6) 

as follows from (A3) and (A9). After symmetrizing the lattice sum in (4.5), 
we find for the coefficient ~2 in the square lattice 

~ z  = - [ 2 b / ( 2  - b ) ]  [ - 2 b ( 1  - b ) / ( 2  - b) 2 

+ Z H(nx, ny)+~K(nx,  ny)] 
r i C O  n 

(4.7) 

where the summands are 

H(nx,  ny) = R~x(n, 0) / [1  - R2x(n, 0)]  

K(nx, ny) - 4 - R~y(n, 0)/[1 2 -- R~y(n, 0)3 
(4.8) 
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0 2 
0 1 3 4 i- lx 

(b) 
Fig. 1. Two-dimensional square lattice with summation region (a) {nx~>n.,.~>0} and (b) 
{ n x > ~ n j . - l ) O  } in (4.7) involving lattice Green's functions (a) G~x(n,z=O ) and (b) 
Gxy(n, z = 0 ) ,  respectively. The shaded lines denote the lines of reflection symmetry. The 
arrows denote the scheme for solving the recursion relations (A10) for Gxx(n, z) and Gxy(n, z) 
in Appendix A. The Greens' functions at the sites marked with black dots are used as initial 
values in solving the recursion relations. 



1014 Ernst and van V e l t h o v e n  

The summations in (4.7) can be reduced to triangular region indicated in 
Fig. la and lb, respectively: 

H(n,m)=4 ~ H(n, 0 ) + 8  ~ H(n,m) 
n g - O  n ~ l  n > m > ~ l  

~ K ( n , m ) = 4  ~, K(n ,n+l )+8  ~ K(n,m) 
n n>~O n > ~ m > ~ l  

based on the symmetry properties 

H(n, n) = 0; H(n, m) = H(m, n) 

H(n, rn) = H(-n ,  m) = H(n, - m )  

as follows from (3.3), (A4), and (B10), and 

K(n, m)= K ( - n -  1, m)= K(n, - m +  1) 

K(n, m) = K(m - 1, n + 1) 

The lines of reflection symmetry for the functions H and K are indicated 
respectively in Fig. la and lb. The quantities H and K are expressed in 
terms of R~e(n, 0 ) =  [ � 8 9  G=~(n, 0) with the help of (3.3) and (2.15), 
and the integrals G~e(n, 0) have been calculated in Appendix A. Their 
numerical values are listed in Table I, and we can calculate the coefficients 
al and ~2 in the density expansion of the diffusion coefficient. 

The two-dimensional lattice sums in (4.7) converge very rapidly, as 
2 The first term in each of the sums, viz. Z ,  In1-8, where In[2=n~+ny. 

4H(1, 0) and 4K(0, 1), determines essentially the value of the complete 
sum, as one can easily verify by using the values 

Rxx(1, 0; 0 ) =  [b/(2-b](1 - 4 / n )  

Rxy(1, 0; 0) = [b/(2 - b)](1 - 2/~) 

from Table I and comparing the results with Table II. The remaining terms 
in (4.9) contribute less than 1.3% over the whole range of b values (b ~< 1). 
Thus we have the approximate analytical expression for ~2 (correct within 
1.3%) 

- 4 b 2  [ b3(4 - 7c)4 
c%(b)~(2_-~- ~ b -  1 +2~2(g_2b)(~z_~b+2b ) 

b 3 ( ~  - 2 )  4 7 (4.9) 

Because of the symmetry (1.7) between high and low concentrations upon 
interchanging the conductances (rr +-+ l/a), we also have an expansion of D 
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Table l .  Values of Gx,~(nx, nv;O)=A+B/rr 
and Gxy(nx, nv; O) = C + O/n 

(nx, ny) A B 

(1, O) 2 - 8  
(2,0) 10 32 
(3, o) 50 -472/3 
(4,0) 258 -2432/3 
(5,0) 1362 -64184/15 
(2, 1) - 6  56/3 
(3, 1) - 34  320/3 
(4,1) -190 8852/15 
(3, 2) 10 -472/15 

C D 

(0, 1) - 2  4 
(1,1) --4 12 
(2, 1) --20 188 
(3,1) --104 980 
(4,1) 552 26012 
(I, 2) 2 - 2 0  
(2,2) 8 - 7 6  
(3, 2) 52 -2452 
(2, 3) - 2  92 
(3,3) - 1 2  564 

~3 
'3 
'15 
~3 
'3 
'15 
'15 
'15 

in  p o w e r s  o f  1 - - c .  T h e  c o m b i n e d  e x p a n s i o n  p o s s i b l y  a l l o w s  us to  e s t i m a t e  

t he  c o m p l e t e  c d e p e n d e n c e  o f  D b y  i n t e r p o l a t i o n  b e t w e e n  the  h i g h -  a n d  

l o w - d e n s i t y  resul t s .  T h e  n u m e r i c a l  v a l u e  of  t he  coef f ic ien t  ~2 is l i s t ed  in 

T a b l e  II  for  t he  r e l a t e d  p a i r s  of  p a r a m e t e r s  (a ,  c r ' =  l / a )  or  

Table l l .  Coeff ic ient  a 2 in (4.4) for Several Values o f b = l - a  

b c~2(b) b' = b / (b  - 1 ) ~2(b')  

1 -0.21075 - oo 4.2108 
9/10 0.16944 - 9 2.5082 
7/8 0.21189 - 7 2.2079 
4/5 0.27047 - 4 1.5073 
3/4 0.27291 - 3 1.1671 
1/2 0.14737 -- 1 0.29707 
1/3 0.06394 - 1/2 0.09606 
1/4 0.03497 - 1/3 0.04666 
1/5 0.02194 - 1/4 0.02744 

822/45/5-6-16 
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(b, b ' =  b/(b- 1)), where a = 1 -  b. The final results for the diffusion coef- 
ficient D(c, a) are plotted in Fig. 2 for the whole range of c values. 

For  the square lattice the diffusion coefficient obeys an additional sym- 
metry relation (1.8) based on self-duality, which relates the diffusion coef- 
ficient D(c, or) at the parameter value a = 1 -  b to the diffusion coefficient 
D(c, l/a) at the parameter value a ' =  1/a or b'=b/(b-1). Hence, the 
expansion coefficients cti(a ) and ei(1/a) in (4.4) are related through 

(4.10) 

which is a consequence of self-duality (1.8). One can verify that the explicit 
results derived in (4.7) and (4.8) for the square lattice indeed satisfy the 
requirements of self-duality, since R~(n, 0) only changes sign under the 
mapping cr ~ 1/a. 

Since the symmetry relation (1.9) provides us with the exact value of 
the diffusion coefficient for the half-filled square lattice, viz. 

1.0 

.0 .2 .4 .6 .8 1.0 
C 

Fig. 2. Diffusion coefficient D(c)/D(O) versus concentration c of impurity bonds for several 
values of the impurity conductance 0-. ( ) The c expansion (4.4) with coefficients given in 
Table II; ( - - )  the ( 1 -  c) expansion obtained from the symmetry relation (1.7). (@) Exact 
value D(�89 g ) = a l / 2 D ( 0 ) =  o-1/2/4. For bond percolation (0- = 0 )  the threshold D(�89 0 ) = 0  is 
also exact. ( - - )  The new results for bond percolation are compared with the simulation results 
of Kirkpatrick 15) and ( - - )  with effective medium theory, where D(c, 0 ) =  (1 --2c)/4. 
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D(�89 or)=rr 1/2 Do, we have a test on the accuracy of the extrapolations 
between high and low densities, as indicated in Fig. 2. 

A further test on the accuracy of the extrapolations follows from the 
rigorous bounds on the following quantity: 

d(c, a)=D(c,  cr)/Do =2dO(c, rr) (4.11) 

derived by Golden and Papanicolaou, r in particular their Eq. (6.12), 
reading 

am(1 - c ,  1/~)<,d(c, a) = ad(1 - c ,  1/~)~m(c, a) (4.12) 

valid for or< 1; for rr> 1 the inequality signs are reversed. We also 
introduced 

m(c, rr)= l + c [ ( r r - 1 ) - l  + (1 -c ) /d]  1 

= l - dbc /Ed -b (1  - c ) ]  (4.13) 

with a = 1 - b .  For the one-dimensional case upper and lower bound coin- 
cide with the exact value, derived below (4.5). Comparison of (4.12) and 
(4.13) with (4.4) and (4.5) also shows ~2(rr)<~db:/(d-b) 2 for a <  1, with 
the equality sign reversed for rr > 1. 

For  the 2D percolation case (~ = 0, b = 1) the rigorous bounds reduce 
to O<~d(c,O)<,q(1-c)/(l+c), which are clearly satisfied, as shown by 
Eig. 2. The test appears to be most critical for small nonvanishing rr values. 
In Table III we have compared the upper bound (ub) and lower bound 
(lb) with the extrapolated expansion D(21(c, rr) at low density (c expansion) 
and at high density I - ( 1 - c )  expansion] for the value or=0.1, where the 
exact value for J(1/2, r  

If we consider the interpolation formula 

/)(c, rr)= max{D(2)(c, rr), aD(2)(1 - c ,  1/rr) } (4.14) 

Table III. Comparison of Upper and Lower Bounds (ub and Ib) on A(c, a)  
wi th  Results from c Expansion and (1 - c )  Expansion at 

o = 0 . 1 ,  Where A(1/2, (~) = ~ - ~ 0 . 3 1 6  

c lb c Expansion (1 - c) Expansion ub 

0.40 0.294 0.373 0.206 0.507 
0.475 0.251 0.261 0.255 0.440 
0.50 0.239 0.224 0.245 0.419 
0.55 0.217 0.151 0.224 0.379 
0.60 0.197 0.079 0.206 0.341 
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as an estimate for the c dependence of the diffusion coefficient over the 
whole range of c values, then we may conclude that /}(c, a) satisfies the 
rigorous bounds for all values of c and a. 

5. RETURN OR STAYING PROBABIL ITY 

As a second application of our result, exact up to O(cZ), for the 
response function F(q, z) in (3.8), we consider the probability distribution 
Po(t) for zero displacement, the so-called return or staying probability. In 
fact, we are able to calculate the whole average probability distribution 
P~(t) through Fourier inversion. For  the Laplace-transformed quantity 
/S,(z) we find from (2.4) 

P,(z) = fq e iqnF(q, z) 

This yields, in particular, for the return probability 

(5.1) 

/5o(Z) = f g + f  g2~B(z) 

+ c  a ~'R~B(n,z) R~)(n,z)/[1-R~(n,z)] (5.2) 
nsefl 

where we have used (2.11) with M(q, z) from (3.6) and we introduced 

B(z)=2cdT{l +c ~' } R~(n, z ) /[1-  2 R.~z(n, z)] (5.3) 

and 

R(21tn z) - R (2)r z) 

= T f  e-~q"G(q) eJ(q) g2(q) 

d 
= -T-~z [G~(n, z)] (5.4) 

On the impurity-free host lattice the return probability is given by the first 
term on the rhs of (5.2), Po(z) = ~ g, with a long-time behavior of the form 
Po(t) ~ (4gDot) -d/2 as t ~ ~ ,  with Do = (2d) -1. 

In order to determine the long-time behavior of Po(t) on the dis- 
ordered lattice, we need to know the dominant small-z behavior of the 
remaining terms in Po(z ) in (5.2). In the second term the dominant small-z 
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singularity is contained in the integral ~g2co=-(d /dz)~gco .  This 
corresponds in time language to 

(_td/dt)fe_~O,~(d/2)(2zcDot) ~/2 as t--.vo 

The factor B(z), defined in (5.3), approaches a constant B(0) as z -~0  
[compare with (4.2)]. 

To determine the dominant singularity of the third term in (5.2), one 
cannot interchange the small-z limit with the lattice summation. The 
arguments are the same as those referring to the third term in (4.2), and we 
proceed similarly by separating it into 

c ~ ~ ' / L ~ ( n ,  z) R ~ n  z) 
nctfl 

+ C2 E '  2 R~ein, z)R~})(,,, z )/[1 -R~e(n,  z ) ] (5.5) 
n ~  

The first term can be evaluated analytically in a manner similar to 
Appendix B. The result is 

4c2T2d2f g3~o2-4c2Txdf g2 of go) 

In the last equality we have only kept the dominant small-z singularity, 
and used cq=2dT(0),  as given in (4.5). The long-time behavior 
corresponding to ~ g3(o2 is [ d (d+  2)/8](4~Dot) ,t/2 as t ~  oo. 

The second term in (5.5) converges rapidly, so that lattice summation 
and small-z limit can be interchanged. Here R(2)(n z), defined in (5.4), con- 

~ ~ c t c t  \ 

tains the dominant small-z singularity, which is independent of the site 
index n. The arguments are essentially the same as given in Appendix A4 
for the square lattice. For our purpose we may therefore make the 
following replacement in the second term of (5.5): 

z) ~ 6~ 2T(0) f R(2)tn, g2 ~o 

and set z = 0 elsewhere. 
Combination of the previous results and comparison with (4.4) and 

(4.5) shows that the long-time behavior of the return probability for the 
disordered lattice has the anticipated form: 

f o ( n  ,~ [-4~O(e) t] -d/~ (t ~ oo) 
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where the diffusion coefficient D(c) is given by the density expansion (4.4) 
and (4.5). The result also agrees with the exact result ~6~ for the 1D random 
jump rate model, where D(c) = D0[1 + cb/(1 - b)] -~ 

6. SHORT-TIME EXPANSIONS 

The behavior of the response function F(q, z), of the probability dis- 
tribution of displacements P~(t), of the time-dependent diffusion coefficient, 
the VACF, etc., can be calculated exactly for short times to all orders in the 
impurity concentration and for arbitrary dimensionality d, as will be shown 
in this section. 

Starting from (2.4), we write the inverse Laplace transform of the 
response function as 

~ ' ( q , t ) = ( e - ' a ) q q  1 - t ( L q q ) +  ! ,2/r2 ) + " -  (6.1) 2 ~ \ ~ q q  

where, due to (2.7)-(2.10), 

Lqq, = co(q) (~ qq, - (~Lqq, 

6Lqq, = (I/N) ~ c~ exp[i(q - q') n] e*(q) a~,(q) 
n 

Cqq, = (I/N) ~ c~ exp[i(q - q') n] 
/7 

(6.2) 

With the help of these relations we can calculate (Lqmq) for m = 1, 2, 3 .... 
We shall only work out the results for m = 1 and 2, and simply quote those 
for m = 3 :  

( Lqq)  = co(q)( 1 - bc) 
2 ( t q q )  = c o 2 ( q ) ( 1  - -  2be)  

+ (b/2d) 2 • ~ e*(q) e~(q') e~(q') e#(q)(Cqq, C~q,q) 
c~j3 q' 

(6.3) 

To proceed we use the following fluctuation formulas~6): 

~ ~6qq, ( Cqq, Cq,q ) = O%/N) c~z + 

( Cqq, C~q,q,, CTq,,q ) = (~c3/N) c5~;6~,~ (6.4) 

-I- ( ls  qq,(~ ~r -I- 6 qq"(~ccfl -~ 3 q'q"6ccy) -~ t~  6qq,(~ q,q,, 
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where ~r is the lth cumulant corresponding  to the lth m o m e n t  
( ( c : )  l )  = ( c , ] ) = c  and is given by 

~cj = ( c )  = c ;  ~:2= ( ( c -  ( c ) )  2) = c ( 1 - c )  
(6.5) 

t% = ( ( c  - ( c ) )  3) = c(1 - c)(1 - 2c) 

One  thus obtains  

2 (Lqq)  = (b2/d) c(1 - c) co(q) + (1 - be) 2 co2(q) (6.6) 

and the response function becomes  

F(q, t) = 1 - t(1 - be) co(q) + �89 - c)(bZ/d) co(q) + (1 - be) 2 co2(q)] 

-~t3{c(1 - e)(b2/d2)[(d+ �89 - bc) - b(1 - 2c)]  co(q) 

+ c(1 - c ) ( 2 b 2 / d ) ( 1  - be) co2(q) + (1 - bc)  3 co3(q)} + O( t  4) (6.7) 

where we have also used the result for (L~q) .  The coefficient of t" is exact 
to all orders in the concent ra t ion  c. This expansion allows us to obta in  the 
shor t - t ime behav ior  of the momen t s  of displacement ,  etc. If  one replaces 
t~/n! by z " -1  in (6.7) one obtains  the high-frequency expansion of the 
response function F(q, z), f rom which the high-frequency expansion of the 
V A C F  q~(z), ac conductivi ty,  Burnet t  functions, etc., can be obtained.  

As an i l lustration we consider the t ime-dependent  diffusion coefficient, 
defined in (1.1), and we deduce f rom (4.1) and (6.7) 

[)(t) = -�89 2 Y'(q, t)pq = o 

= D E - tc(1 - c)(b2/2d 2) 

+ t2c(1 - c)(b2/4d3)[(d+ �89 - bc) - b(1 - 2c)]  + O(t  3) (6.8) 

where the short-time limit o f / 5 ( t )  is referred to as the Enskog value or the 
high-frequency limit of the diffusion coefficient: 

DE = (1 -- bc)/2d (6.9) 

It cor responds  to the diffusion coefficient of  an effective uniform lattice with 
L ~ replaced by ( L ) =  (1 - b c ) L  ~ where 1 - b c  is the effective free volume 
fraction or the porosity of the medium.  (Recall that  b = 1 cor responds  to 
completely  blocked bonds.)  

The  short- t ime behavior  of  the V A C F  follows f rom (6.8) and (1.1). As 
/ ) ( t )  for t ~ 0 approaches  a nonvanish ing  l imi t /3 (0 )  = DE, Eq. (1.1) implies 
that  the V A C F  contains  a term DE6+( t ) ,  where 6+(t)  is a Di rac  delta 
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function normalized to unity on the positive time interval. Thus, we find for 
the VACF as t ~ O: 

q~(t) "~ DEC5 + (t) -- c(1 -- c)(bZ/2d 2) 

4- re(1  - -  c ) ( b 2 / 2 d 3 ) [ ( d +  �89 - b e )  - b(1  - 2c)] + O(t 2) (6.10) 

The coefficients in the short-time expansions (6.7)-(6.10) are exact to all 
orders in the impurity concentration. Furthermore, one easily verifies that 
the symmetry relations (1.6)-(1,7) between high and low densities are 
indeed satisfied. 

7. C O N C L U S I O N  

Using the methods of kinetic theory, (l) we have studied the random 
resistor network or a lattice version of a Lorentz model, or the problem of 
an unbiased random walk (RW) on a random d-dimensional cubic lattice 
with two types of bonds: host lattice bonds having conductivity a 0 = 1 and 
concentration 1 - c  and impurity bonds (scatterers having conductivity 
a = 1 -  b and concentration c. We have set up a systematic expansion of 
transport properties in powers of the impurity concentration. The results to 
O(c) are determined by summing all possible visits of the RW to a single 
scatterer (called "repeated ring collisions" in kinetic theory). The O(c 2) 
terms are determined by summing all possible sequences of visits of the RW 
to a pair of scatterers. For  the 1D case the results to O(c t) coincide with the 
c expansion of the exact result Do/D(c, a )= 1 - c b / ( 1 - b )  for the random 
barrier model, as discussed in Section 4. 

For  the square lattice we have given in Table II explicit values for the 
expansion coefficient 0~ 2 in the density expansion (4.4) of the diffusion coef- 
ficient D(c, a ) = D o ( 1  + ~ l c + ~ 2 c  2) for several values of the parameter 
b =  l - a ,  defined in (1.4). The concentration dependence of 
D(c, a) = aD(1 - c, l/a),  as obtained from a c expansion and (1 - c) expan- 
sion, are shown in Fig. 2 by a solid and a dashed line respectively. If we 
denote the quadratic c approximation by D(2) (c ,  a), we may consider the 
interpolation formula 

/5(c, a ) =  max{D(2)(c, a), aD(2)(1 --c, l /a)} 

as an estimate for the c dependence of the diffusion coefficient over the 
whole range of c values. For  the square lattice we have verified in Table III 
that the estimate/5(c, a) satisfies the rigorous upper and lower bounds on 
D(c, a) derived by Golden and Papanicolaou319) 

At short times the response function, its moments, time-dependent 
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transport coefficients, VACF, etc., can be expanded in a Taylor series. The 
expansion coefficients are exact for all densities and arbitrary dimen- 
sionality. 

We further investigated (the long-time behavior of) the return 
probability Po(t) on a disordered cubic lattice. Its Laplace transform is 
directly related to (the low-frequency behavior of) the average spectral den- 
sity of eigenmodes of the master equation (1.3) or, equivalently, to the 
spectral density of lattice vibrations of a cubic harmonic lattice with a ran- 
dom mixture of two types of spring constants. (~'16) 

It was found that the long-time behavior Po(t)~ [4z~D(c)t] -d/2 is 
completely determined by the diffusion coefficient (4.4) of the disordered 
lattice. Since Po(t)= S~ dED(E)e  -Et, an equivalent statement is that the 
low-frequency part of the average density of vibrational states 
D(coZ)dco2~cod-2dco2 is completely determined by the effective elastic 
constant. 

Symmetry properties (homogeneity and self-duality) determine the 
exact value of the effective diffusion coefficient or effective elastic constant 
in the 50-50 mixture on a square lattice. 

In subsequent publications the present kinetic theory shall be applied 
to the explicit calculation of the VACF and the time-dependent diffusion 
coefficient of the square lattice with particular emphasis on their long- and 
short-time behavior. We shall also modify the hopping rules of the 
unbiased RW (blind ants) to allow for effects of the impurities present on 
nearest neighbor sites (myopic ants). The calculations are presently being 
extended to three-dimensional simple cubic lattices. 

A P P E N D I X  A 

A I .  P r o p e r t i e s  

This appendix deals with the properties of the integral G~(n, z) with 
(~, fl ..... =x ,  y) for the two-dimensional case, where n=(n~, ny). These 
quantities are essential to describe the dynamics of the random walker on a 
square lattice and are defined as 

G~a(n, z) = fq e i, qg(q) e~(q) e~(q) 

= ~6(n)-- lJ(n + p~)-- fi(n-- pB) + ~b(n + p~-- pp) (A1) 

Here g(q) = [z + co(q)] - 1 is the response function (2.4) of the uniform lat- 
tice with co(q) = 1(2 - cos qx - cos qy) and e~(q) = 1 - exp( - iq~) and p~ is a 
unit vector along the lattice direction c~ = x, y. The summation-integration 
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symbol Sq is defined in (2.14) and extends over the first Brioullin zone 
(1BZ). The integral has been expressed in terms of/~(n, z), which is the 
Laplace-transformed probability Pn(t) of a displacement n = (nx, ny) on a 
uniform lattice, defined as 

~(n, z) = - ~  e-iqng(q) = e-i~g(q) 
q 

We first note the obvious properties 

G~(n, z) = G ~ ( - n ,  z) 

G x~(nx, ny, z) = G yy(ny, nx, z) (h2) 

Gxy(nx, ny, z) = Gyx(ny , n x, z) 

We further write Gxx in the form 

G~x(n, z) = G~(n~, ny, z) 

= 2 f g(q)(1 - cos qx) exp( -inxq~ - inyqy) (A3) 

This expression is symmetric under reflections in nx=0  and ny=O, 
indicated by the (shaded) lines of reflection symmetry in Fig. la: 

G~x(n~, n.v, z) = Gxx(-nx ,  n~, z) 

= G~(nx, - n y ,  z) = Gxx(-n~,  - n y ,  z) (A4) 

The symmetry of G~,.(n, z) is more clearly exhibited by writing it in the 
form 

Gx~(n~, ny, z) = 4 fq g(q) sin(�89 sin(�89 

xexp[i(nx+�89 q.~+i(ny-�89 ] (A5) 

This expression is antisymmetric under reflection in n x = - � 8 9  and ny= �89 
indicated by the (shaded) lines of reflection symmetry in Fig. lb: 

G~y(n~, ny, z) = - G x y ( - n ~ -  1, ny, z) 

=-Gxy(n~ ,  - n y + l , z ) = G x y ( - n x - 1  , - n y + l , z )  (A6) 

and symmetric under reflection in ny = nx + 1 (see Fig. lb): 

Gxf(nx, ny, z) -~ G~y(ny - 1, n~ + 1, z) (A7) 
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From (2.9) and (A1) 

G~x(n, z) + Gyy(n, z) = 4 f g(q) co(q) e -mq 

By employing (A2), (2.6), and the relation gco = 1 - z g ,  we can write it as 

Gxx(nx, ny, z) + G~(  ny, nx, z) = 46,o - 4z13(n, z) 

Since zl3(n, z) --, 0 as z ---, 0 for all n, we deduce that 

G~x(n, n, 0) = 28~o 

and 

(AS) 

G ~x(n ~, ny, O) = - G  x~(nv, nx, 0) + 2c5~,oC~,o (A9) 

Using the relation Y'p e x p ( - i q p )  = 411 - co (q ) ] ,  one derives from (A1) and 
(2.6) 

G~(n + p, O) = 4G~(n, 0) - 4[C~,o - c5, ,~ - C~pt ~ + c5 ,p~, ,~] (A10) 
P 

where n + p  is a nearest neighbor (n.n.) site of n. The relation (AI0) 
together with the symmetry relations (A4), (A8), and (A9) can be con- 
sidered as a recursion relation for G~(n, 0), and the integrals with 
n = (nx, n y = 0 )  are given as initial value (in fact, one needs only input 
elements with nx = odd). The solution scheme is indicated in Fig. 1, where 
black circles represent the input elements. Because of the above symmetries, 
all sums involving Gxx(n, 0) can be restricted to the triangular region 
{nx > ny >~ 0} indicated in Fig. 1. 

For  calculating sums involving G~y(n, 0), it is sufficient to solve (A10) 
in the triangular region {n x~>0 ; l~ny~<n  x + l ) ,  due to the symmetry 
properties (A6)-(A7), as indicated in Fig. 2. This can be done once 
Gxy(n, 0) is given for n = (nx, ny = 1) with nx ~> 0 (In fact, one only needs 
input elements with n~ = even, as indicated by the black circles in Fig. 2). 

A 2 .  V a l u e s  o f  G,~(n, O) 

For  the 3D simple cubic lattice there exists tables (2~ of the lattice 
Green's functions /~(n, z = 0 )  for sites close to the origin, from which 
G~(n, z - - 0 )  can be calculated using (A1). Undoubtedly such tables also 
exist for the square lattice, but we have not found the reference. 
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To calculate G~x(n, 0), we write (A3) in the explicit form 

G~x(n~, ny, O) = r~ -2 ff~ dx dy 

x ( 1 - c o s  x) cos(n~x) c o s ( n ~ y ) ( 2 - c o s  x - c o s  y) 1 

The y integration can be performed using Eq. (3.613.1) of Ref. 17 and 
yields 

fo Gxx(nx, ny, 0) = (4/~) dx cos(nxx)[(1 - cos x)/(3 - cos x) ]  1/2 

x [ 2 - c o s x - [ ( 1 - c o s x ) ( 3 - c o s x ) ] l / 2 ]  I~.~1 (A l l )  

To solve the recursion relation (A10), we need Gxx(n,O) for 
n =  (n~, n~,)= (1, 0), (3, 0) ..... as input, as explained in Fig. lb. The sub- 
stitution u = cos x reduces these integrals to elementary ones, e.g., 

Gxx(1, 0; 0) = (4/7c) d u u [ ( l + u ) ( 3 - u ) ] - l / 2 = 2 - 8 / ~  
- - I  

As an example, we apply the recursion relation (A10) for 
G~m- G.~x(n, m; 0) at (n, m ) =  (1, 0) to obtain G2o according to the scheme 
indicated in Fig. la, viz. Goo+G~+G~, ~+Gzo=4G10+4 .  Since Goo=2 
and G u = G I _ I = 0  due to (A8), we find G2o = 1 0 -  32ffc. A few integrals 
are listed in Table I; integrals with larger (nx, n~) values have been 
calculated numerically. 

To solve (A10) for G~y(nx, ny; 0), we need G~.v(n x, 1; 0) as input. For 
that purpose we write (A1) in the form 

ff 
~ 

Gxv(n , 1 ; 0 ) =  -�89 -2 dx d y [ c o s n x - c o s ( n x  + x)] 
- r ;  

x (1 - c o s  y ) / ( 2 -  cos x - c o s  y) 

fo 2 dx [cos nx - cos(nx + x)]  

x { 1 - [ ( 1  - c o s  x ) / ( 3  - c o s  x ) ]  1/2} 

= -26 ,0  + �89 0; 0) - �89 + 1, 0; 0) (a12) 

In the second equality we used Eq. (3.613.1) of Ref. 17. The integrals Gxx 
have been calculated above, and are listed in Table I. The final results for 
Gxy(n~, ny; 0) are also listed in Table I. 
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A3. Large-n Behavior of Gap(n, O) 
The large-n behavior of G~(n, 0) differs from that of the lattice 

Green's functions/~(n, 0), because the leading large-n terms of/~(n, 0) in 
(A1) cancel. A separate discussion is required and we start the analysis by 
introducing a new integration variable ~b in (All) ,  defined through 
cos x = 1 - ch ~6. This yields 

(,In(3 + 2 ~,/2) 
G~.~(nx, n~., 0 )=  (4/~) Jo &0 exp(ln.v I q~) 

x cos[nx arccos(2 - ch q~)] [(ch q) - 1 )/(3 - ch ~o)] 1/2 

(A13) 

The behavior of this integral for large InyJ and arbitrary nx is determined 
by small cp values, where it reduces to 

~zc 
Gxx(nx, n,.; 0) ~ (2/7r) J0  d~o q) cos(nxcp) e x p ( -  Fnyl ~o) 

~ (2/rc)(n~ /,/2 2 r/2)2 - ~ ) / ( n ~ +  ,,, (In.,,I ~> 1) (A14a) 

The finite upper limit in (A13) has been extended toward infinity, which 
does not affect the leading asymptotic behavior. The integral decays for 
large distances as O(jn~.l-2), and the first asymptotic correction is of 
relative O (p ny I - 2). 

In a similar manner one finds for ny~> 1 to relative order in 1/tn~. I 

Gx,(n~, ny; 0) ~ -(2/7c) n.~ny/(n~ + n2) 2 A14b) 

A4. Small-z Behavior of Ga~(n, z) 

To determine the dominant small-z singularity of Gx.~(n, z) it 
venient to take the z derivative of (A3): 

1S c o n -  

dG~(n~,n,,,z) 2 if~ dxdy  
dz ( 2 ~ )  2 

(1 - c o s  x) cos(nxx) cos(n~, y) 
(z  + 1 - �89 c o s  x - �89 c o s  y ) 2  

This singularity comes from small (x, y) values, where the denominator 
vanishes. By approximating the integrand by its small-(x, y) behavior, one 
easily determines the dominant singularity as dG.~x/dz = (2/z)In z, so that 

Gx~(n, z) ~ Gx~(n, 0) + (2/~r) z in z + O(z) (A15) 
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We also note that the dominant small-z singularity of G~x(n, z) at fixed 
n = (nx, ny) is independent of n. A similar analysis shows that the dominant 
small-z singularity of Gxy(n, z) at fixed n is weaker than O(z In z), viz. 

Gxy(n, z) ~ Gx.v(n, O) + O(z) (A16) 

A P P E N D I X  B 

This appendix contains the analytic evaluation of the lattice sum 
R2~B(n, z). We obtain, with the help of (3.3) and (2.13), 

R R~(n,z)=T2~ g218x[Zls/jI2 T 2 glaxl 2 (B1) 
nB 

The prime on the summation sign indicates the restriction that the bond 
label (n, fl) be different from (0, x). In deriving this equality we have used 
(2.6) in the form 

E '  ei''(q + q') = NO q,q,-- ~[~.~ 
~t 

The/3 summation can be performed using (2.9), and [e~[ 2 appearing under 
integral signs may be replaced by 2co because of the cubic symmetry. 
Finally, we find from (2.16) 

where J ' ( z )  = d J ( z ) / d z .  Combination of the above results yields the required 
relation: 

~ '  R.2~z(n, z) = 4d2T2(j + z J ' -  j2) (B2) 

A P P E N D I X  C 

The behavior of the diffusion coefficient and VACF to linear order in 
the impurity concentration is determined by the integral J(z), defined in 
(2.16). For the square lattice this integral can be calculated exactly (14) and 
we determine its small-z behavior. We introduce 

JCz) = �89 f gco = �89 - zLCz)] (C1) 
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and obtain from (2.16) and (2.9) 

L(z) = g(q) = (27r)-2 dqx t dq,. 
7C ~--TZ 

x ( z +  1 - � 8 9  q x - � 8 9  q : ) - '  (C2) 

where L(z) is the Laplace transform of the return probability on a uniform 
lattice, and we show that it is given by 

L ( z ) =  (2/7c)(1 + z )  'K((1 + z )  -2) (C3) 

where K(x) is the complete elliptic integral of the first kind, given by/~8/ 

K(x) ~rC/2d[(l-xcos2t)  1/2 = �89 2 El (1, I-; l ; x )  (C4) 
~ 0  

The expression in terms of Gauss' hypergeometric function 2F~ follows 
from Ref. 18 and is convenient in view of later expansions around x = 1. To 
derive (C3), we change in (C2) to new integration variables ~ =  �89 + q,.) 
and/~ = �89 - q.~.) and use the invariance of the integrand under the trans- 
formations (~,/~) -" (/~, ~) -"  ( ~ -  ~, ~z-/~). This transforms (C2) into 

,;/ io L(z)=(1/Tr 2 dc~ dfl(z+ 1 - c o s  ~ cos f l ) - '  

= (life) fo dc~[(z § 1 )2 _ cos 2 c~] -,/2 

= (2/~)(1 + ~ ) - '  K((I +z)  -2) (C5) 

Formula (15.3.10) of Ref. 17 in combination with (C4) determines the 
small-z behavior of L(z) for the square lattice as 

L(z) ,,~ -(1~re)(1 - �89 In(z/S) + (1/2re) z + ... (z -" 0) (C6) 

and (C1) yields 

J(z),~�89 +(1/27z)(l-�89 (z-,O) (C7) 

A C K N O W L E D G M E N T  
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cerning the return probability. 
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